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Abstract

Clustering and recognizing patterns is one of the major applications of machine learning

recently. Recognizing patterns in naturally occurring events helps us to predict future

events more accurately. One obvious example is weather and climate prediction. It has

always been difficult to accurately predict the weather and climate at a future point in

time. However recent research has shown that with modern machine learning techniques

we are able to achieve better predictions. Generative Adversarial Networks (GANs for

short) have had a huge success since they were introduced in 2014 by Ian J. Goodfellow

and co-authors in the article Generative Adversarial Nets. They are a class of machine

learning framework where two neural networks contest with each other to produce better

results. These networks have a vast range of applications. In this project we develop and

study the application of various GANs to simulate the dynamics of Weather and Climate.

Weather has fast dynamics, and climate has slow dynamics. The interactions between a

fast and a slow dynamics is modeled well by the Lorenz96 system, which is a common

baseline model for evaluating both parameterization and data assimilation techniques.

Simulations of the atmosphere must approximate the effects of small-scale processes with

simplified functions called parameterizations. Standard parameterizations only predict

one output for a given input, but stochastic parameterizations can sample from all the

possible outcomes that can occur under certain conditions. We have developed and eval-

uated a machine learning stochastic parameterization, which builds a mapping between

large-scale current conditions and the range of small-scale outcomes from data about
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both. We test the machine learning stochastic parameterization in a simplified mathe-

matical simulation that produces multi-scale chaotic waves like the atmosphere. We find

that some configurations of the machine learning stochastic parameterization perform

slightly better than a simpler baseline stochastic parameterization over both weather and

climate like time spans.

Keywords: Machine Learning, Stochastic, Parameterization
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1. Introduction

1.1 Brief

The activities of many primary sectors depend on the weather for production, e.g. farming.

The climate is changing at a drastic rate nowadays, which makes the old weather prediction

methods less effective and more hectic. To overcome these difficulties, the improved and

reliable weather prediction methods are required. These predictions affect a nation’s

economy and the lives of people.

A large source of weather and climate model uncertainty is the approximate represen-

tation of unresolved sub-grid processes through parameterization schemes. Traditional,

deterministic parameterization schemes represent the mean or most likely sub-grid scale

forcing for a given resolved-scale state. Machine learning models offer an approach to pa-

rameterize complex nonlinear sub-grid processes in a potentially computationally efficient

manner from data describing those processes.

1.2 Literature Review

Irreducible uncertainties in weather forecasts result from a lack of scale separation between

resolved and unresolved processes. Uncertainty also arises because the chaotic nature of
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I, Introduction 2

the atmosphere gives rise to sensitivity to uncertain initial conditions. Practically, uncer-

tainty is represented in forecasts using ensembles of integrations of comprehensive weather

and climate prediction models, first suggested by Leith (1975). To produce reliable prob-

abilistic forecasts, the generation of the ensemble must include a representation of both

model and initial condition uncertainty.

Initial condition uncertainty is addressed by perturbing the initial conditions of ensemble

members, for example by selecting directions of optimal perturbation growth using sin-

gular vectors (Buizza Palmer, 1995), or by characterizing initial condition uncertainty

during the data assimilation cycle (Isaksen et al., 2010). One approach for representing

irreducible model uncertainty is stochastic parameterization of unresolved physical pro-

cesses. A more detailed motivation for including stochastic parameterizations in weather

and climate models is presented in Palmer (2012).

Stochastic approaches for numerical weather prediction (NWP) were originally proposed

for use in the European Center for Medium-Range Weather Forecasts (ECMWF) ensemble

prediction system (Palmer et al., 1997; Buizza et al., 1999).

Recent work has assessed the impact of stochastic parameterization schemes in both ide-

alized and state-of-the-art climate models for long term integration (P. D. Williams, 2012;

Ajayamohan et al., 2013; Juricke Jung, 2014; Dawson Palmer, 2015; Wang et al., 2016;

H. M. Christensen et al., 2017; Davini et al., 2017; Strømmen et al., 2018). These studies

demonstrate that including a stochastic representation of model uncertainty can go be-

yond improving initialized forecast reliability, and can also lead to improvements in the

model mean state (Palmer, 2001; Berner et al., 2012), climate variability (Ajayamohan et

al., 2013; Dawson Palmer, 2015; H. M. Christensen et al., 2017), and change a model’s

climate sensitivity (Seiffert von Storch, 2010).
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Recent years have seen substantial interest in the development of stochastic parameter-

ization schemes. Pragmatic approaches, such as the Stochastically Perturbed Parame-

terization Tendencies (SPPT) scheme (Buizza et al., 1999; Palmer, Buizza, et al., 2009)

are widely used due to their ease of implementation and beneficial impacts on the model

(Sanchez et al., 2016; Leutbecher et al., 2017; H. M. Christensen et al., 2017). Other

schemes predict the statistics of model uncertainty using a theoretical understanding of

the atmospheric processes involved, such as the statistics of convection (Craig Cohen,

2006; Khouider et al., 2010; Sakradzija Klocke, 2018; Bengtsson et al., 2019). A third

approach is to make use of observations or highresolution simulations to characterize

variability that is unresolved in a low-resolution forecast model (Shutts Palmer, 2007).

1.3 Scope

Machine learning models offer an approach to parameterize complex nonlinear sub-grid

processes in a potentially computationally efficient manner from data describing those

processes. The family of machine learning models consist of mathematical models whose

structure and parameters (often denoted weights) optimize the predictive performance of

a priori unknown relationships between input (“predictor”) and output (“predictand”)

variables. One active area in current machine learning research is generative modeling,

which focuses on models that create synthetic representative samples from a distribution

of arbitrary complexity without the need for a parametric representation of the distribu-

tion. Generative adversarial networks, or GANs (Goodfellow et al., 2014), are a class of

generative models that consist of two neural networks in mutual competition. Because

the stochastic parameterization problem can be framed as sampling from the distribu-

tion of sub-grid tendencies conditioned on the resolved state, conditional GANs have the

potential to perform well on this task.
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1.4 Objective

The purpose of this study is to evaluate how well GANs can parameterize the subgrid

tendency component of an atmospheric model at weather and climate timescales. A key

question is whether a GAN can learn uncertainty quantification within the parameteriza-

tion framework, removing the need to retrospectively develop separate stochastic repre-

sentations of model uncertainty. Simple chaotic dynamical systems such as L96 are useful

for testing methods in atmospheric modeling due to their transparency and computational

cheapness. The L96 system has been widely used as a testbed in studies including develop-

ment of stochastic parameterization schemes (Wilks, 2005; Crommelin Vanden-Eijnden,

2008; Kwasniok, 2012; Arnold et al., 2013), data assimilation methodology (Fertig et al.,

2007; Law et al., 2016; Hatfield et al., 2018), as well as using ML approaches to learn

improved deterministic parameterization schemes (Schneider et al., 2017; Dueben Bauer,

2018; Watson, 2019).



2. Methods

2.1 Lorenz’96 Model

The Lorenz 96 model is a dynamical system formulated by Edward Lorenz in 1996. It was

designed as a ‘toy model’ of the extratropical atmosphere, with simplified representations

of advective nonlinearities and multi-scale interactions (Lorenz, 1996). It consists of two

scales of variables arranged around a latitude circle. The large scale, low-frequency X

variables are coupled to a larger number of small scale high-frequency Y variables, with a

two-way interaction between the Xs and Y s. It is the interaction between variables of dif-

ferent scales that makes the L96 system ideal for evaluating new ideas in parameterization

development.

The X and Y variables evolve following:

dXk

dt
= −Xk−1(Xk−2 −Xk+1) −Xk + F − hc

b

k∑
j=J(k−1)+1

JYj; k = 1, ....., K (2.1)

dYj
dt

= −cbYj+1(Yj+2 − Yj−1) − cYj +
hc

b
X(int[(j−1)/J ]+1); j = 1, ....., JK (2.2)

where h is the coupling constant, b is spatial-scale ratio, c is temporal-scale ratio and F

is the forcing term.
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II, Methods 6

In this study the full Lorenz ‘96 equations are treated as the ‘truth’ which must be

forecast or simulated. In the case of the atmosphere, the physical equations of motion of

the system are known. However, due to limited computational resources, it is not possible

to explicitly simulate the smallest scales, which are instead parameterized.

The parameterization approximates the true sub-grid tendencies.

U(X, Y ) =
hc

b

k∑
j=J(k−1)+1

JYj, (2.3)

which can be estimated from realizations of the “truth” time series as

Uk(t) = [−Xk−1(t)(Xk−2(t) −Xk+1(t)) −Xk(t) + F ] − Xk(t+ dtf ) −Xk(t)

dtf
(2.4)

The time step dtf equals the time step used in the forecast model for consistency.

Implementation For our implementation we use the number of X variables, K = 8 and

the number of Y variables per X variable, J = 32. Further, we set the coupling constant, h

= 1, the spatial-scale ratio, b = 10 and the temporal-scale ratio c = 10. The forcing term

F = 20 is set large enough to ensure chaotic behavior. The chosen parameter settings,

which were used in (Arnold et al., 2013), are such that one model time unit (MTU) is

approximately equivalent to five atmospheric days, deduced by comparing error doubling

times in L96 and the atmosphere (Lorenz, 1996).

A long “truth” run of the L96 model is performed to generate both training data for

the machine learning models and a test period for both weather and climate evaluations.

The “truth” run is integrated for 20 MTU ( 20,000 samples ) using a linear timestepping

scheme and a time step dt = 0.001 MTU. Output from the first 2 MTU (2000 samples )

are used for training, and the remaining 16 MTU ( 32000 samples )are used for testing.
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Figure 2.1: Plot - first few variables from L96

Figure 2.2: Plot - True subgrid tendencies of X4(Standardized)

A burn-in period of 2 MTU is discarded. All parameterized forecast models of the L96

use a forecast timestep of dtf = 0.005 MTU .

The true sub-grid tendencies Uk(t) are approximated for all Xk, k = 1, .., K.
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2.2 GAN Parameterizations

The GAN parameterization developed for the Lorenz ’96 model in this study utilizes a

conditional dense GAN to predict the sub-grid tendency at the current time step given

information about the state at the previous time step.

The GAN generator accepts Xt1,k, Ut1,k, and a latent random vector Zt1,k as input to

estimate Ût, k , or the predicted U at time t. The discriminator accepts Xt1,k, Ut1,k , and

Vt,k as inputs (where Vt,k may be either Ut,k if from the training data or Ût,k if from the

generator ) and outputs the probability that Vt,k comes from the training data. All inputs

and outputs are re-scaled to have a mean of 0 and standard deviation of 1 based on the

training data distributions.

Z =
X −mean

StandardDeviation
(2.5)

Implementation Each GAN we consider consists of the same neural network architec-

ture with variations in the inputs and how noise is scaled and inserted into the network.

Both the generator and discriminator networks contain two hidden layers with 16 neurons

in each layer. Scaled exponential linear unit (SELU) activation functions (Klambauer et

al., 2017) follow each hidden layer. SELU is a variation of the common Rectified Linear

Unit (ReLU) activation function with a scaled exponential transform for the negative val-

ues that helps ensure the output distribution retains a mean of 0 and standard deviation

of 1. A batch normalization (Ioffe Szegedy, 2015) output layer ensures that the output

values retain a mean of 0 and and standard deviation of 1, which helps the generator

converge to the true distribution faster.
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Figure 2.3: (Top) A diagram of how the GAN networks are connected for training.
(Bottom) A diagram of the GAN network architectures used for the stochastic param-

eterization

The GAN training procedure iteratively updates the discriminator and generator networks

until the networks reach an adversarial equilibrium in which the discriminator should not

be able to distinguish “true” data from generator samples.

The networks a trained for various values of noise and input combinations.

In forecast mode, we test providing both white, or uncorrelated noise, and red, or cor-

related noise to the GAN. The red noise is generated using an AR(1) process with a

correlation equal to the lag-1 autocorrelation of the deterministic residuals of the GAN.

An autoregressive model is when a value from a time series is regressed on previous values

from that same time series. For example in an AR(1) auto regression with lag-1, yt and

yt−1 satisfy:
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Table 2.1: GAN Configurations

Short Name Input Variables Noise Magnitude Noise Correlation Output Layer Noise
XU-lrg-w Xt−1,k, Ut−1,k 1 white yes
XU-med-w Xt−1,k, Ut−1,k 0.1 white yes
XU-sml-w Xt−1,k, Ut−1,k 0.01 white yes
XU-tny-w Xt−1,k, Ut−1,k 0.001 white yes
XU-lrg-r Xt−1,k, Ut−1,k 1 red yes
XU-med-r Xt−1,k, Ut−1,k 0.1 red yes
XU-sml-r Xt−1,k, Ut−1,k 0.01 red yes
XU-tny-r Xt−1,k, Ut−1,k 0.001 red yes
X-med-w Xt−1,k, Ut−1,k 0.1 white yes
X-sml-w Xt−1,k, Ut−1,k 0.01 white yes
X-tny-w Xt−1,k, Ut−1,k 0.001 white yes
X-med-r Xt−1,k, Ut−1,k 0.1 red yes
X-sml-r Xt−1,k, Ut−1,k 0.01 red yes
X-tny-r Xt−1,k, Ut−1,k 0.001 red yes

yt = β0 + β1yt−1 + εt (2.6)

The GANs are all trained with a consistent set of optimization parameters. The GANs

are updated through stochastic gradient descent with a batch size (number of examples

randomly drawn without replacement from the training data) of 1024 and a learning rate

of 0.0001 with the Adam optimizer (Kingma Ba, 2015). The GANs are trained for 30

epochs, or passes through the training data.
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Figure 2.4: Plot - Forecast from GANs trained with Xt−1 and Ut−1 for white input
noise

Figure 2.5: Plot - Forecast from GANs trained with Xt−1 and Ut−1 for red input noise
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Figure 2.6: Plot - Forecast from GANs trained with Xt−1 for white and red input
noises



3. Results

The 14 sets of generated forecast from the 7 different neural networks are evaluated

through various metrices.

3.1 Hellinger distance H

The simplest definition of the ‘climate’ of the L96 system is the probability density function

(PDF) of the individual Xt,k values. The climatological skill can therefore be summarized

by quantifying the difference between the true and forecast PDF. The Hellinger distance

H, is calculated for each forecast model:

H(p, q) =
1

2

∫
(
√
p(x) −

√
q(x))2dx (3.1)

where p(x) is the forecast PDF, and q(x) is the verification PDF (Pollard, 2002). The

smaller H, the closer the forecast pdf is to the true pdf. We also considered the Kullback-

Leibler (KL) divergence (Kullback Leibler, 1951), motivated by information theory, but

found it provided no additional information over the Hellinger distance, so results for the

KL are not shown for brevity.
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Figure 3.1: Deterministic GAN Offline Error for all X

3.2 Offline assessment of GAN performance

The GAN parameterizations are first evaluated on how closely their output subgrid forcing

distributions match those of the truth run when the GANs are supplied with input X and

U values from the truth run. This is summarized by the Hellinger distance in Figure 3.1.

Most of the GANs show a trend of decreasing Hellinger distance for the first few epochs

followed by mostly stable oscillations. GANs with both Xt1,k and Ut1,k as input tend

to perform better in the offline analysis than those with only Xt1,k. Larger input noise

standard deviations seem to reduce the amount of fluctuation in the Hellinger distance

between epochs, but there does not appear to be a consistent correlation with noise

standard deviation and Hellinger distance.
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Figure 3.2: Deterministic GAN Offline Error for X1

3.3 GAN simulation of sub-grid-scale tendency dis-

tribution

The joint distributions of Xt1 and Ut from the different model runs reveal how the noise

standard deviation affects the model climate (Fig. 3.3). Larger noise standard deviations

increase the range of X values appearing in the run but do not appear to change the

range of U values output by the GAN. The behavior of the XU-tny-r GAN devolved into

oscillating between two extremes. The X-only GANs did the best job in capturing the

shape of the truth distribution although they underestimated the variance at the extremes.



III, Results 16

Figure 3.3: Joint distributions (2D histograms) of Xt1 and Ut for each GAN config-
uration. The truth joint distribution is overlaid in red contours on each forecast model

distribution



4. Conclusion

Several of the GANs tested show a weather and climate skill that is competitive with

a bespoke polynomial parameterization scheme. The good performance of the GAN is

encouraging, demonstrating that GANs can indeed be used as explicit stochastic param-

eterizations of uncertain sub-grid processes directly from data.

The L96 system is commonly used as a testbed for new ideas in parameterization, and

ideas tested using the system can be readily developed further for use in higher complexity

Earth system models. However, the L96 system has many fewer dimensions than an Earth

system model and a relatively simple target distribution. The relative simplicity of the L96

system may have also led to the more complex GAN overfitting to the data compared with

the simpler polynomial parameterization. For more complex, higher dimensional systems,

the extra representational capacity of the GAN may provide more benefit than can be

realized in L96. The computational simplicity of L96 also allows for the production of

extremely large training data sets with little compute resources. Higher complexity Earth

system model output can pro-vide training set coverage spatially but will be limited

temporally by the amount of computational resources available.

Future work will use these observations to develop machine-learned stochastic parameteri-

zation schemes for use in higher complexity Earth system models. GANs of a similar level

of complexity to those used for L96 could emulate local effects, such as some warm rain

17
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formation processes. Other generative neural network frameworks, such as variational au-

toencoders, should also be investigated to determine if they can provide similar or better

performance with a less sensitive training process.
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